



# **Math 10 Lecture Videos**

## **Section 4.3: Solving Systems of Linear Equations by the Addition Method**

**PAUL ANDREW GORGONIO**

# OBJECTIVES:



1. Solve linear systems by the addition method.
2. Use the addition method to identify systems with no solution or infinitely many solutions.
3. Determine the most efficient method for solving a linear system.

# Objective 1: Solve linear systems by the addition method.



The third method we will consider for solving a system of equations is the **Addition Method**.

When we use this method, we will again try to eliminate one variable, but we will do that by adding the equations.

Addition method is also known as the **Elimination Method**.

**NOTE:** There is **more than one method** to solve a system of equations. The reason for learning more than one method is that sometimes one method will be **preferable** or **easier to use** over another method.

# Objective 1: Solve linear systems by the addition method.



## Solving Linear Systems by Addition

1. If necessary, rewrite both equations in the form  $Ax + By = C$ .
2. If necessary, multiply either equation or both equations by appropriate nonzero numbers so that the sum of the  $x$ -coefficients or the sum of the  $y$ -coefficients is 0.
3. Add the equations in step 2. *The sum should be an equation in one variable.*

# Objective 1: Solve linear systems by the addition method.



## Solving Linear Systems by Addition

4. Solve the equation in one variable (the result of step 3).
5. Back-substitute the value obtained in step 4 into either of the given equations and solve for the other variable.
6. Check the solution in *both* of the original equations.

# Objective 1: Solve linear systems by the addition method.



**Example 1:** Solve by the Addition Method

$$4x = -2y + 4$$

$$-y = -3x + 3$$

1. Rewrite both equations in the form of  $Ax + By = C$ .

$$4x + 2y = -2y + 4 + 2y$$

Add 2y to both sides.

$$4x + 2y = 4$$

$$-y + 3x = -3x + 3 + 3x$$

Add 3x to both sides.

$$3x - y = 3$$

# Objective 1: Solve linear systems by the addition method.

**Example 1:** Solve by the Addition Method

$$4x = -2y + 4$$

$$-y = -3x + 3$$

2. If necessary, multiply either equation or both equations by appropriate nonzero numbers so that the sum of the  $x$ -coefficients or the sum of the  $y$ -coefficients is 0.

$$4x + 2y = 4 \xrightarrow{\text{No Change}} 4x + 2y = 4$$

$$3x - y = 3 \xrightarrow{\text{Multiply by 2}} 6x - 2y = 6$$



# Objective 1: Solve linear systems by the addition method.

**Example 1:** Solve by the Addition Method

$$4x = -2y + 4$$

$$-y = -3x + 3$$

3. Add the equations.

$$4x + 2y = 4$$

$$\underline{6x - 2y = 6}$$

Add:  $10x + 0y = 10$

$$10x = 10$$

4. Solve the equation in one variable.

$$10x = 10$$

$$x = 1$$



# Objective 1: Solve linear systems by the addition method.

**Example 1:** Solve by the Addition Method

$$4x = -2y + 4$$

$$-y = -3x + 3$$

5. Back-substitute and find the value of the other variable.

$$-y = -3x + 3$$

$$-y = -3(1) + 3$$

Replace x with 1.

$$-y = -3 + 3$$

Multiply

$$-y = 0$$

Multiply both sides by -1.

$$y = 0$$

Therefore, the *potential* solution is (1,0).



# Objective 1: Solve linear systems by the addition method.

**Example 1:** Solve by the Addition Method

$$4x = -2y + 4$$

$$-y = -3x + 3$$

6. Check:

$$4x = -2y + 4$$

$$4(1) \stackrel{?}{=} -2(0) + 4$$

$$4 \stackrel{?}{=} 0 + 4$$

$$4 = 4$$

$$-y = -3x + 3$$

$$-(0) \stackrel{?}{=} -3(1) + 3$$

$$0 \stackrel{?}{=} -3 + 3$$

$$0 = 0$$

Because *both* equations are satisfied, solution is (1,0).



# Objective 1: Solve linear systems by the addition method.



**Example 2:** Solve by the Addition Method

$$3x - y = 27$$

$$4x + y = 8$$

1. Rewrite both equations in the form of  $Ax + By = C$ .

Not necessary, since the equations are already in  $Ax + By = C$  form.

2. If necessary, multiply either equation or both equations by appropriate nonzero numbers so that the sum of the  $x$ -coefficients or the sum of the  $y$ -coefficients is 0.

Not necessary here, since the sum of the  $y$ -coefficients is 0.

# Objective 1: Solve linear systems by the addition method.



**Example 2:** Solve by the Addition Method

$$3x - y = 27$$

$$4x + y = 8$$

3. Add the equations.

$$\begin{array}{r} 3x - y = 27 \\ 4x + y = 8 \\ \hline \text{Add: } 7x = 35 \end{array}$$

4. Solve the equation in one variable.

$$\begin{aligned} 7x &= 35 \\ x &= 5 \end{aligned}$$

# Objective 1: Solve linear systems by the addition method.



**Example 2:** Solve by the Addition Method

$$3x - y = 27$$

$$4x + y = 8$$

5. Back-substitute and find the value of the other variable.

$$3(5) - y = 27$$

$$15 - y = 27$$

$$-y = 12$$

$$y = -12$$

Therefore, the *potential* solution is  $(5, -12)$ .

# Objective 1: Solve linear systems by the addition method.

**Example 2:** Solve by the Addition Method

$$3x - y = 27$$

$$4x + y = 8$$

6. Check:

$$3(5) - (-12) = 27$$

$$15 + 12 = 27$$

$$27 = 27$$

$$4(5) + (-12) = 8$$

$$20 + (-12) = 8$$

$$8 = 8$$

Because *both* equations are satisfied, solution is (5, -12).



## Objective 2: Use the addition method to identify systems with no solution or infinitely many solutions.



### Solving Systems of Linear Equations

To determine that a system has **exactly one solution**, solve the system using one of the methods. A single solution will occur as in the previous examples.

To determine that a system has **no solution**, solve the system using one of the methods. Eventually, you'll get a *false statement*, like  $3 = 4$ .

To determine that a system **has infinitely many solutions**, solve the system using one of the methods. Eventually, you'll get a *true statement*, like

## Objective 2: Use the addition method to identify systems with no solution or infinitely many solutions.



### Example 1.

Solve:

$$x + 2y = 4$$

$$3x + 6y = 13$$

Multiply the first equation by  $-3$  and then add.

$$-3x - 6y = -12$$

$$\underline{3x + 6y = 13}$$

$$0 = 1, \text{ false}$$

The false statement indicates that the system is inconsistent and has no solution.

Solution Set:  $\{ \}$

## Objective 2: Use the addition method to identify systems with no solution or infinitely many solutions.



### Example 2.

Solve:

$$x - 5y = 7$$

$$3x - 15y = 21$$

Multiply the first equation by  $-3$  and then add.

$$-3x + 15y = -21$$

$$\underline{3x - 15y = 21}$$

$$0 = 0, \text{ true}$$

The true statement indicates that the system has infinitely many solutions.

Solution Set:  $\{(x,y) | x - 5y = 7\}$  or  $\{(x,y) | 3x - 15y = 21\}$

# Objective 3: Determine the most efficient method for solving a linear system.



| Comparing Solution Methods |                                                                                                 |                                                                                                                          |
|----------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Method                     | Advantages                                                                                      | Disadvantages                                                                                                            |
| Substitution               | <p>Gives exact solutions.</p> <p>Easy to use <i>if a variable is on one side by itself.</i></p> | <p>Solutions cannot be seen. Introduces extensive work with fractions when no variable has a coefficient of 1 or -1.</p> |

# Objective 3: Determine the most efficient method for solving a linear system.



| <b>Comparing Solution Methods</b> |                                                                                          |                           |
|-----------------------------------|------------------------------------------------------------------------------------------|---------------------------|
| <b>Method</b>                     | <b>Advantages</b>                                                                        | <b>Disadvantages</b>      |
| Addition                          | Gives exact solutions.<br>Easy to use <i>if a variable has a coefficient of 1 or -1.</i> | Solutions cannot be seen. |

# Objective 3: Determine the most efficient method for solving a linear system.



| <b>Comparing Solution Methods</b> |                            |                                                                                                                                            |
|-----------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Method</b>                     | <b>Advantages</b>          | <b>Disadvantages</b>                                                                                                                       |
| Graphing                          | You can see the solutions. | If the solutions do not involve integers or are too large to be seen on the graph, it's impossible to tell exactly what the solutions are. |

# OBJECTIVES:



1. Solve linear systems by the addition method. ✓
2. Use the addition method to identify systems with no solution or infinitely many solutions. ✓
3. Determine the most efficient method for solving a linear system. ✓